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INTRODUCTION

Recent advances in computational creativity 
can be broadly classified into two groups – 
studies involving development of programs 
and computational techniques that are capable 
of intelligent and creative tasks, and those in-
volving computer systems and programs that 
put the human-user in the loop with the aim of 
enhancing user creativity. The latter is often 
labeled computer-supported creativity. The 
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ABSTRACT
The	role	of	collaboration	in	the	realm	of	social	creativity	has	been	the	focus	of	cutting	edge	research	in	design	
studies.	In	this	paper,	the	authors	investigate	the	role	of	collaboration	in	the	process	of	creative	design	and	
propose	a	computational	model	of	creativity	based	on	the	newly	proposed	meta-design	approach.	Meta-design	
is	a	unique	participatory	approach	to	design	that	deals	with	opening	up	of	design	solution	spaces,	and	is	
aimed	at	creating	a	viable	social	platform	for	collaborative	design.	A	meta-design-based	collaborative	ap-
proach	to	the	design	process	may	achieve	ET-creativity	by	expanding	the	conceptual	space	of	design	beyond	
what	would	have	been	possible	by	individual,	non-collaborative	design.	The	model	has	been	implemented	
using	interactive	genetic	algorithms,	which	casts	the	design	problem	as	an	optimization	problem	and	uses	
a	set	of	collaborative	users	for	subjective	fitness	evaluation.	The	design	problems	investigated	include	the	
collaborative	design	of	architectural	floorplans	and	editorial	design	of	brochures.

definitions of creativity and creative design have 
been debatable, although it is broadly agreed 
that creativity is the generation of ideas that are 
both novel and valuable (Boden, 1999). The 
word “ideas” is domain-specific and has been 
used to mean concepts, products, processes, 
theories, melodies, paintings, numerous other 
forms of art, and so on. Novelty of ideas is 
defined with respect to past ideas, using either 
the creator or the entire humanity as a reference 
and keeping in mind the domain in which the 
idea is proposed, leading to classification of 
creativity into P-creativity (personal creativity) DOI: 10.4018/jkss.2011040105
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and H-creativity (historical creativity). Value 
to the idea can either be attributed at the time 
of proposition or later. In fact, many creative 
ideas have been recognized as being creative 
long after their being proposed – a result of the 
fact that creative ideas are ahead of their times 
and therefore can be impractical. An example 
of a creative idea in the business domain is the 
Netflix model of visual media distribution that 
is both novel (the model was far removed from 
static late-fee based Blockbuster model) and 
valuable (the implementation of the model made 
the parent company one of the most profitable 
technology companies in the last decade).

In this paper, we propose a new paradigm 
of computational creativity that is at the in-
tersection of the two broad classes – a model 
that supports user-centric creative endeavors 
in design and is capable of producing designs 
that have creative aspects. The rest of the paper 
is organized as follows: in the next section we 
present the need for the new paradigm and 
review the formalized notion of computational 
creativity and the meta-design approach based 
on open systems. We then present the proposed 
collaborative interactive framework for creative 
design and relate it to the formalized notions of 
creativity and the meta-design approach. Before 
concluding we also present the algorithmic 
implementations of the model for collaborative 
design of architectural floorplans and editorial 
design of documents and brochures.

COMPUTATIONAL CREATIVITY: 
A FORMALIZED NOTION

Researchers in computational creativity are 
interested in the underlying process of creative 
ideation. This fundamental question has led to 
the definition of a conceptual space of ideas, 
which a computer program can search in. Cre-
ativity that is a result of simply searching the 
conceptual space for complete or partial pos-
sibilities is labeled E-creativity, for exploratory 
creativity. If the conceptual space is considered 
bounded by static rules, such E-creativity is 
often regarded as merely “innovation”, and not 

creativity. On the other hand, if the rules that 
bound the conceptual space can be changed 
with respect to time, then the search for ideas 
in a continuously changing space is called 
T-creativity, for transformational creativity 
(Boden, 1999). This can be mapped to how a 
human thinker comes up with creative ideas. 
The mind is a veritable storehouse of ideas and 
if the mind could be mapped, this storehouse 
then becomes the conceptual space of ideas. 
If the thinker does not broaden his mind (by 
incorporating more domain knowledge, knowl-
edge from other domains, etc.) he or she is just 
exploring a well-defined unchanging conceptual 
space producing ideas that may not necessarily 
be creative. It is only when the thinker moves 
out of rigid definitions of what-is and what-
can-be, thereby modifying the conceptual space 
of ideas, that creative ideas are born. Kekule’s 
discovery of Benzene rings, Watson and Crick’s 
double helix model of the DNA, Frank Lloyd 
Wright’s Fallingwater are just three of the many 
instances where thinkers and conceptualizers 
broke out of the well-defined mold and pro-
duced creative ideas. While what makes some 
people creative thinkers is a topic of ongoing 
neuroscience and psychology research, it can 
be presumed that T-creativity (breaking out of 
norms and boundaries) requires both an innate 
ability, varied knowledge and an applicative 
bent-of-mind.

A thinker may initially restrict the concep-
tual space of ideas intentionally to arrive at a first 
set of solutions and to develop an understanding 
of the problem domain and the solution space. 
The thinker can restrict the conceptual space 
based on the demanded requirements for the gen-
erated solutions, based on personal experience 
and intuition, based on solutions generated for 
similar problems, or based on common sense. 
However, once the initial conceptual space has 
been explored, it is up to the thinker to expand 
and change the conceptual space to produce 
creative ideas. Since an initial conceptual space 
can be expanded in many different ways, it fol-
lows that a first thinker may generate solutions 
with different creative qualities than a second 
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thinker also generating solutions, even if both 
the first and the second thinker start from the 
same initial conceptual space.

In the computational creativity domain 
it has been argued that T-creativity is hard 
to achieve because systems that are able to 
spontaneously transform themselves (beyond 
what the system designer intended it to) are a 
philosophical oddity. Computational systems 
that produce artifacts deemed creative have 
been largely based evolution of random or 
human-proposed seed concepts. However, 
Boden judges a system by evolved artifacts for 
their creative content and proposes that a com-
putational system exhibits T-creativity if such 
artifacts do not in any way resemble the seed 
concepts. Bill Latham’s evolutionary art of 3D 
shapes (Todd & Latham, 1994) is compared to 
Karl Sims’s 2D art program (Sims, 1991), both 
built on interactive genetic algorithms (which 
we will delve deeper in later sections) and both 
evolving attractive colored images and shapes 
from seemingly random seed images (and 
shapes). Since Sims’s program produces images 
that are deemed more attractive by audiences 
(and are seen as bearing no resemblance to the 
seed images), his system was stated as having 
achieved T-creativity. Latham’s 3D shapes 
seemed more or less similar to the starting forms, 
so it is surmised that Latham’s program was just 
performing an evolutionary search in a fixed 3D 
shape-space, an example of E-creativity. This 
definition however precludes any engineering 
or product design system from ever achieving 
T-creativity, e.g. a computer system used to 
design kitchen layouts will always produce 
layouts that resemble a kitchen at some level.

Wiggins (2001) formalizes the notion of 
E-creativity and T-creativity in an attempt to 
address computational system creativity. He 
defines a global universe of ideas U that consists 
of finite subspaces called conceptual spaces C. 
U is a multidimensional space, whose dimen-
sions are capable of representing anything; all 
possible mutually distinct ideas correspond with 
distinct points in U. The notion of the universe 
of ideas U is required because if U and C were 
the same and since each point in U can be 

reached by exploration, as a result only E-
creativity would be possible. The conceptual 
space C is bounded by knowledge, experience 
and system limitations, and can be defined by 
a set of rules �R . Members of C are chosen from 
U by implementing an interpretation . on the 

set of rules �R as,C RU= � . A different set of 

rules R̂ is needed to devise a strategy to explore 
the conceptual space C. Exploration is defined 
as idea evolution – one can move from an exist-
ing idea c0 to a new idea c1 (c0, c1 ∈ C) using 
an interpretation . on the set of traversal rules

R̂ as,c R R c1 0= ∪ˆ � . The bounding rules �R
are needed to ensure that c1 ∈ C. A third set of 
rulesR is defined that allows the program to 
evaluate the quality of a potential concept. All 
three sets of rules �R , R̂ and R are expressed 
using a common language A; the interpretations 
are also defined so as to interpret rules expressed 
using A . E-creativity can be formalized using 
the septuple,

U R R R, , . , . , ,̂ℓ "  

and occurs when a conceptual space C defined 
by �R  is explored using well-written traversal 
rules R̂  and evaluation rules R . On the other 
hand, T-creativity happens when the set of rules 
�R  can be modified from an existing �R

0
 to a 

new �R
1

using transformation rules that ensure
! ℓR
1
Ì . However, Wiggins presents three 

scenarios that tend to weaken the contention 
that T-creativity is always superior to E-cre-
ativity. These are summarized:

1.  The choice of traversal rules R̂might make 
it impossible to search for a particular 
concept c unless the traversal rules R̂ are 
transformed. So although this is not akin 
to T-creativity, a transformation of traversal 
rules from R̂0 to R̂1 that lets the search 
process discover c is significant.
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2.  If the fitness landscape within a conceptual 
space is biased in a way to favor a certain 
choice of traversal rules R̂  over others, a 
search process that uses the favored set of 
rules will uncover concepts in the convo-
luted regions of the fitness landscape and 
can be considered a creative search 
process.

3.  A transformation of conceptual space C0 
to C1 by transforming the bounding rules 
from �R

0
to �R

1
such that a new concept c ∈ 

C1 is discovered. However if C1 = C0 + {c}, 
it is really hard to make the case that the 
T-creativity process that made the discov-
ery possible is significant.

The model of computational creativity 
proposed in this paper builds on the first two 
points that Wiggins makes. We also extend 
Wiggins’s formalized approach by proposing 
that by modifying traversal rules in continu-
ously transforming conceptual spaces with an 
ever-changing fitness landscape, we achieve 
ET-creativity in the design process.

Collaboration and Meta-Design

A computational approach that supports T-
creativity is the recently developed meta-design 
framework (Giaccardi & Fischer, 2008). Meta-
design is a participatory approach to design that 
opens up solution spaces rather than let users 
manipulate complete solutions (as is the case 
of modifying artifacts in Sims’s or Latham’s 
visual systems). The intent is to allow the user 
to have control over the set of rules �R , R̂ ,R
and thereby interact with the system in A . The 
meta-design approach envisions designers as 
reflexive practitioners, who gradually build 
their understanding of the design problem as 
the design process progresses. We define design 
as a purposeful activity of devising new struc-
tures characterized by new parameters, aimed 
at satisfying certain requirements. Activities 
such as creating a business model, a product, 
an architectural layout, urban planning, human-
computer interfaces etc., are all design activities 

in different domains. A creative support system 
is defined as one that allows the emergence of 
design possibilities with time, especially for 
ill-defined and complex design problems in-
volving designers from different knowledge 
domains. Giaccardi and Fischer (2008) define 
open support systems as those that can be 
modified by designers and can evolve at use 
time, supporting more complex interactions. 
Use time is defined as the time when the support 
system interacts with the designer in the process 
of design. For example, imagine a computer 
support system assisting an interior designer in 
the process of developing creative kitchen 
layouts. The process of developing kitchen 
layouts is the process of design and happens at 
use-time. Build time on the other hand, is defined 
as the time when the support system itself was 
built by system and computer engineers. In 
order to qualify as open systems, support sys-
tems cannot be completely built prior to use 
and must be designed for evolution at the hands 
of the designer in a distributed manner. This 
imposes a practical limitation on how to build 
such open support systems – only a truly AI-
based system will therefore be an open system.

In this paper we overcome this limitation 
by having the system evolve through collabo-
ration between already-built remotely located 
environments. We hypothesize that collabora-
tive interaction between peers working on a 
design problem at use time can exchange system 
information thereby altering how their own 
environment perceives the design process. This 
indeed relates to the proposition that to support 
open-ended and creative evolution it is funda-
mental for a user to be a part of the environment 
experienced by other users (Arthur, 1994; Taylor 
et al., 2002). The open systems envisioned by 
meta-design link creativity and evolution in 
that they “(1) promote the transcendence of the 
individual mind by supporting the differences in 
knowledge, abilities and motivations that exist 
among users, (2) support sustained participation 
by facilitating users’ engagement in personally 
meaningful activities, and (3) enable the mutual 
adaptation and continuous evolution of users and 
systems by allowing users to evolve new ways 
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of interacting with the environment and enabling 
systems to adapt to users’ changing needs and 
practices”(Giaccardi & Fischer, 2008).

Collaborative systems have been the 
focus of studies into creativity and computer-
supported cooperative work (Wilson, 1991) 
since the early 1990s. There has been a paradigm 
shift from computer-aided design systems to 
computer-supported collaborative design sys-
tems (Peng, 2001). It has been argued that much 
of our intelligence and creativity results from 
interaction and collaboration with other indi-
viduals (Csikszentmihalyi, 1997). Co-creation 
of concepts is one of the objectives included 
in the meta-design schema. Mediators used to 
facilitate users’ engagement in the co-creation 
of meaningful concepts, are classes of environ-
ment excitations dynamically generated over the 
course of interaction by the interplay between 
the capabilities of the system and the individual 
concepts the users produce during the process 
of interaction. Mediators provide a concept for 
the emergence of meaningful concepts during 
the design process. Olivier Auber’s Poietic 
Generator (Giaccardi & Fischer, 2008) has 
been referred to as a mediator-based system 
for co-creation of artistic images which allows 
different users to create space configurations 
on a shared canvas, the sum total of which 
either facilitates or inhibits the emergence of 
meaningful images on the canvas.

Affective mechanisms support co-creation 
by providing the environment for mutual 
interaction of different users with the support 
system. Affective mechanisms defined gener-
ally for creative digital arts enable users to 
experience the temporal and spatial features 
of the environment in terms of intentionality 
and proximity, e.g. they provide interpreta-
tion to a user’s chain of actions over time by 
quantifying intentionality, thereby driving the 
interaction towards more meaningful concepts. 
Andy Deck’s Open Studio (Giaccardi & Fischer, 
2008) is another example of a mediator-based 
collaborative art project that uses affective 
mechanisms in a way that higher level interac-
tions with users are interpreted on an emotional 
level which then reflects in the artistic content 

of the created artifact. Later, we show that our 
proposed collaborative interactive evolution-
ary framework of design is a mediator-based 
method of co-creation supported by affective 
mechanisms that connect various users in a 
larger conceptual space.

Collaborative Interactive Genetic 
Algorithms for Creative Design

Evolutionary algorithms such as genetic al-
gorithms, genetic programming, evolutionary 
strategy etc. are a class of population-based op-
timization algorithms inspired by evolutionary 
biology that refine a set of potential solutions 
using representation, combination and selection 
operators based on relative fitness with respect 
to a problem. Creative evolutionary computa-
tional systems have been defined as evolutionary 
algorithms that either aid human creativity or 
solve design problems that only creative people 
could solve (Bentley, 1999; Bentley & Corne, 
2002), a definition used to characterize creative 
computational systems in general. Goldberg 
presents an idealized framework for conceptual 
design in four components: problem, designer, 
alternative designs and design competition, and 
shows how evolutionary techniques, specifi-
cally genetic algorithms (GAs), can be thought 
of as “a lower bound on the performance of a 
designer that uses recombinative and selective 
processes” (Goldberg, 1991). Rosenman has 
explored evolutionary models for non-routine 
design (Rosenman, 1997a) and has investigated 
the generation of creative house plans (later 
referred to as floorplans in this paper) using 
genetic algorithms (Rosenman, 1997b). Cre-
ation of floorplans has also been investigated 
by Gero and Schnier as an evolving representa-
tion problem that restructures the search space 
(Gero & Schnier, 1995), by co-evolution of 
design and solution-spaces (Poon & Maher, 
1997) and using case-based reasoning (De Silva 
Garza & Maher, 2000). A similar layout design 
problem – that of arranging furniture and objects 
around a room using genetic algorithms has 
been dealt in Nakajima et al. (2006). Genetic 
approaches are relevant to ET-creativity and 
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are most likely to be described as models of 
creativity when applied to art, media and other 
domains that are normally regarded as involving  
human creativity.

Unlike engineering design where opti-
mization criteria are readily quantifiable, in 
domains such as architectural and product 
design various design concepts may need to 
be subjectively evaluated, especially when 
requirements include aesthetic and other subjec-
tive criteria. It is difficult, often impossible, to 
construct measures and explicit functions that 
can mimic the way designers evaluate subjective 
criteria. Interactive Genetic Algorithms (IGAs) 
are genetic algorithms whose fitness function 
is replaced by interactive user evaluations. 
IGAs in particular and interactive evolution-
ary computation (IEC) in general have been 
used in a wide range of applications ranging 
from engineering to arts and social sciences 
to design user-centric optimization systems 
(Takagi, 2001). Interaction modifies the GA in 
a fundamental way – by using subjective fit-
ness, the fitness landscape is dynamic without a 
definite maximum. The system objective should 
therefore be to learn more about user prefer-
ences and constantly modify a loosely defined 
fitness function. Interactivity therefore relates 
directly to knowledge creation and knowledge 
consolidation in the fitness space.

A computational approach to investigate 
conceptual spaces in design (also called solu-
tion spaces in evolutionary terms) to support a 
human designers’ exploration is presented by 
Woodbury and Burrow (2006). A conceptual 
space is defined as a networked structure of 
related descriptions of partial and intentional 
designs encountered in an exploration process. 
For example, a designer designing a new kind of 
chair considers every imaginable juxtaposition 
of objects that make sitting possible as a vast 
conceptual space of chair designs; he or she then 
starts with an idea or many ideas, continuously 
evolves them using partial concepts from within 
this conceptual space by traversing the space 
in some unstructured manner. We continue this 
line of thought with a collaborative approach 
to the exploration of solution spaces using 

an IGA-based system. The basic framework 
is shown in Figure 1. At the lowest level an 
interactive genetic algorithm searches a solu-
tion space with a continuously changing fitness 
landscape, belonging to a particular designer at 
use time. At a level higher, the collaborative 
tool that connects different designers together 
lets each redefine their solution space at use 
time, thereby achieving the equivalent to the 
meta-design proposition of user participation at 
system build-time. We attempt to explain why 
this process is creative according to Wiggins’ 
formalized approach to creativity and also relate 
it to the meta-design open-system approach to 
co-creation as follows:

Let the initial conceptual space Ci
0

 for 
designer i be defined by set of rules �Ri

0
 and an 

interpretation function . , let space traversal 

be defined by set of rules R̂i0 and the related 

interpretation function . ; and let the quality 
assessment of potential solutions be defined by 
another set of rulesRi

0
.

1.  Ro
iis a function of the fitness, which in the 

implementations described in this paper, 
comprises of a static knowledge-based 
objective component and a subjective 
component that changes with respect to 
time. This constantly evolving subjective 
part depends on how the designer interacts 
with the system. Assuming a “rational” 
user the interactions should be interpreted 
by the system as trying to reinforce the 
static component of the fitness function 
with unquantifiable subjective notions. 
Whether or not the knowledge base can be 
expanded based on these interactions is an 
open-research question. We therefore drop 
the subscript 0 and denote the quality as-
sessment rules for designer i as Ri. For 
example, in the collaborative support 
system developed for designing floorplans 
presented later in this paper, the objective 
component is derived from architectural 
guidelines and governmental regulations 
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regarding layout of rooms and open spaces, 
and the subjective component is built by 
interpreting the interactions as providing 
specific information about designer likes 
and dislikes regarding relative positioning 
of rooms and other interior details.

2.  R̂i0 and . depend on genetic recombina-
tion operators such as crossover and muta-
tion, and the selection criteria used to create 
the new population. In population-based 
searches, evolution of new concepts should 
be seen as evolution of new populations, 
the individuals in which will fare better 
with respect to rules Ricompared to indi-
viduals in previous populations. The tra-
versal rules R̂i0 can be modified to R̂i1  by 
collaborating with a peer designer j search-
ing a vastly different conceptual space C j

0

using a different set of traversal rules R̂j0 ; 
mutual collaboration also lets j modify his 
or her set of traversal rules to R̂j1 . The 
designers can be remotely located, each 
using an interactive system that has been 

independently built as a closed system at 
built time. Collaboration allows the two 
remote systems to exchange algorithmic 
parameter information such as type of 
crossover operator, probabilities of cross-
over, selection probabilities, selection 
operator type etc., and then modify their 
own parameter information based on the 
new set of information made possible by 
collaboration. We hypothesize that al-
though the independently developed inter-
active systems are closed systems, col-
laboration and exchanging such information 
at use time, eventually means that each 
individual system acts as an open system. 
In the floorplanning example, this can be 
seen as the interaction between a designer 
exploring similar looking variants of a 
two-bedroom, one open space plan with 
another designer exploring radically dif-
ferent bedroom plans, which is a result of 
selection and recombination parameters 
that can be biased towards either explora-
tion or exploitation of the solution space. 
By exchanging parameter information, the 

Figure	1.	Schematic	showing	implementation	of	the	proposed	collaborative	interactive	evolu-
tionary	model	for	creative	design
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first designer can explore radical versions 
of the two-bedroom one-open space plan 
rather effectively.

3.  The bounding rules for conceptual space 
�Ri
0
and the interpretation . depend on the 

genetic representation and the transforma-
tion function used to convert a plan in the 
genotypic space of solutions to a plan in 
the phenotype space (the conceptual space 
or the solution space). For designer i to 
modify the conceptual space from Ci

0
 to 

Ci
1
thereby making T-creativity possible, 

the set of bounding rules can be changed 
to �Ri

1
by modifying the genetic representa-

tion or the transformation function during 
use time. As can be envisaged, the latter is 
easier to implement than the former, and 
also forms the basis of creativity using 
association and analogy. For example, the 
same genetic representation of a floorplan 
can be transformed into the real-world as 
a plan with straight-walled rooms, or can 
be modified to be interpreted as plan with 
some rooms having at least one curved 
wall. Small empty spaces between rooms 
can be interpreted as closets or differently 
interpreted as ante-rooms. The interpreta-
tion depends on the transformation func-
tion, information about which can be ex-
changed at use time between remote peers.

Figure 1 represents a particular implemen-
tation of the proposed computational model of 
creative product design. Each dotted box repre-
sents a running instance of the interactive design 
tool – each instance is guided by a designer 
and searches a bounded conceptual subspace 
in accordance with designer preferences. The 
genetic algorithm in each instance combines the 
designers’ subjective picks with a computable 
fitness function to drive the search through the 
conceptual subspace. The user-interface to our 
design tool allows the designer to zoom in on 
a particular displayed design and pick form-
based aspects of the design for exploration. 
In addition to guiding his or her own search, 

each designer also can see a small subset of the 
other designers’ evolving designs in (possibly) 
different conceptual spaces. The designer can 
then choose to modify his or her search space or 
move to another space by incorporating one or 
more of the peer-evolved designs into his or her 
genetic population. Incorporating peer-evolved 
designs also tends to influence the subjective 
and objective utility functions associated with 
the genetic search.

Algorithmic Implementations

In this section we briefly present results 
obtained using the proposed model and its 
implementation in two domains – designing 
two-dimensional architectural floorplans and 
editorial layout design for brochures. The 
non-dominated sorted multi-objective genetic 
algorithm, abbreviated NSGA-II (Deb, 2001) 
was used as the underlying genetic algorithm 
for the floorplanning problem. The NSGA-II 
creates Pareto-optimal fronts of non-dominated 
floorplans; within a front none of the plans are 
any worse than any other individual across all fit-
ness criteria and all plans within a front are said 
to have the same rank. The multi-objectivity is 
a result of treating the objective criteria separate 
from subjective criteria. With regard to the ob-
jective criteria, the only measurable objective in 
floorplans is their compliance with architecture 
data guidelines (Neufert, Baiche, & Walliman, 
2008). The guidelines for single-storey house 
plans relate to minimum room dimensions and 
areas. Every individual floorplan is assigned an 
objective fitness value based on its compliance 
with the minimum dimension and minimum area 
guidelines. With regard to subjective criteria, 
the algorithm lets the designer pick a particular 
floorplan as being the “best”. This subjective 
pick (based on the user’s preferences) is ana-
lyzed and translated into a user’s preference 
for the number of rooms, total built area (area 
occupied by rooms), and room adjacencies. An 
individual plan in a population is compared to 
the “best” plan and assigned high subjective 
fitness values if the plan is similar to the “best” 
plan (selected by the user) in each of the three 
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subjective criteria. Parents used to populate 
a new generation are selected by using the 
crowded distance tournament, a specialized 
genetic selector operator.

We define individual floorplans as recur-
sive partitions of a 2-D rectangular panel using a 
binary tree representation, coded as a nested list. 
Tree representations have been used to evolve 
creative shapes of reading lamps (Liu, Tang, & 
Frazer, 2004; Liu & Liu, 2006). At the root node, 
the lamp is classified as being a combination of 
four components – a shade, a light, a holder and 
a bottom. Each of the four components is defined 
by features such as size, shape, color, among 
others. This rudimentary representation lends 
itself to recombination using generalized genetic 
programming operators. In the floorplanning 
implementation, the parameters at every node 
of the tree specify how the rectangular panel 
at that level is subdivided (either left/right or 
top/bottom) and what percentage of panel area 
at that level is contained in either the left or 
the top subdivision. Figure 2 shows how the 
rectangular panel is subdivided into rooms and 
spaces. A room is represented by the list [0, 1] 
and a space by [0, 0]. An arbitrary list [0, 0.75] 
represents division in top/bottom configuration 
with top sub-panel containing 75% of the parent 
panel. Another list [1, 0.80] represents division 
in left/right configuration with left sub-panel 
containing 80% of the parent panel.

The binary tree representation for floor-
plans necessitates the need for a specialized 
tree-crossover operator. The nested list is parsed 
as a binary tree and two such parent trees are 
crossed at randomly chosen nodes, such that 
entire sub-trees following those nodes are 
swapped. The tree representation is used in 
genetic programming (Koza, 1992) and hence, 
our crossover operator maps to the crossover 
operator used in genetic programming. The 
operator is shown schematically in Figure 3. 
Depending on the probability of mutation, the 
mutation operator works on the two parameters 
of the nodes (or leaves) differently. It performs 
a binary swap on the first parameter thereby 
changing the subdivision configuration. De-
pending on the value of the second parameter, 

the operator either performs a binary swap (if 
the value is either 0 or 1), thereby changing a 
room to a space and vice versa, or if the second 
parameter is a real number between 0 and 1, 
the operator replaces it by another random real 
number in the same interval, thereby altering 
the dimensions of the room (or the space).

Students, both graduate and undergraduate, 
at the Evolutionary Computational Systems 
Laboratory (ESCL) at the University of Nevada, 
Reno, were given instructions in using an in-
terface for interaction and collaboration for the 
floorplanning problem. Student designers with 
apparently no knowledge of creating floorplans 
were asked to guide the system to design a 
floorplan for a two-bedroom, one-bathroom 
apartment with the following constraints: (1) 
one of the corners of the living area is also the 
north-west corner of the plan, (2) the two bed-
rooms should not be have a common wall, and 
(3) at least one of the bedrooms has a direct 
access to the bathroom. The problem stated 
above was solved both individually and col-
laboratively. During the collaborative evolution, 
only nine representative designs from the large 
population size maintained by the IGA were 
made visible to every designer in the peer-group. 
This was done to reduce user fatigue. How-
ever, during individual evolution of floorplans 
for the same problem (without collaboration), 
the designer had visual access to all the evolv-
ing designs in the population maintained by the 
user’s IGA. The non-collaborative interactive 
and the collaborative interfaces are shown in 
Figures 4 and 5 respectively.

The representative visualization is done by 
selecting designs from the Pareto-optimal fronts 
created by the NSGA-II. Three designs are 
picked from the first front, three from the sec-
ond front, and so on until nine designs are 
obtained. We also enforce that all individuals 
in the displayed subset are unique, given that 
the population contains enough diversity, since 
displaying a small subset consisting of numer-
ous repeats is not useful to the user and does 
not give the user a sense of the current state of 
the population. By displaying a small subset 
and through fitness interpolation we can reduce 
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Figure	2.	Binary	tree	representation	of	floorplans	encoded	as	a	nested	list

Figure	3.	Tree	crossover	operator
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Figure	4.	The	non-collaborative	interactive	interface	for	floorplanning

Figure	5.	The	collaborative	interactive	interface	for	the	floorplanning	problem
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the amount of user interaction, and thereby, 
user fatigue. However, if the case arises that 
the user does not like any of the individuals in 
the displayed subset, then the user has the op-
tion to scroll down the current panel, and view 
the rest of the population, which remains hidden 
from view unless the user scrolls down. For 
users with little patience or that fatigue quick-
ly (which is often the case), they can adhere to 
the use of the displayed subset. For the adven-
turous users, who are not intimidated by view-
ing hundreds of individuals to find the indi-
vidual they like the best, they can scroll to view 
every single individual in the population. The 
ability to view the entire population also proves 
useful to users who early in a session explore 
the entire population, when there is a high 
degree of diversity, and later on only use the 
subset after the population has been biased to 
custom-evolved individuals.

The designer’s interactive (non-collab-
orative) input consists of selecting the design 
he or she likes the best from either the subset 
of representative individuals, or from one of 
the individuals from the rest of the population 
(viewed by scrolling). In collaborative evolu-
tion, every designer is free to inject one or more 
of the designs visualized from the peer group 
into his or her evolving population. In addition, 
the designer also has the choice to select one of 
the case-injected peer designs as the floorplan 
considered the best by the user, which is use-
ful in cases where the user’s population has 
converged to undesirable solutions. The user 
selected best is then used to interpolate the 
fitness of every other design in the population. 
Through the interface we also support the abil-
ity to provide input every nth generation, where 
n is the number of generations skipped before 
asking for user input, and which can be changed 
during a session. We also allow the user to go 
back to a previous generation if the population 
diverged into an undesired direction. The user 
also controls the crossover and mutation rate 
through the interface.

A fitness biasing scheme is employed to 
ensure that injected designs from peer popu-
lations survive long enough to leave a mark 
on the host population by using the concept 
of bloodline. Injected designs are considered 
to be full blood, while designs already in the 
population are treated as designs with no	blood. 
The bloodline consists of a number between 0 
(no blood) and 1 (full blood), and this value is 
added as another criteria to be maximized by 
the NSGA-II with Pareto optimality. Thus in-
jected designs will all be non-dominated (in the 
topmost front) and will not die off immediately. 
The injected individuals replace the bottom 10% 
of the population (Louis & Miles, 2005). When 
a full-blooded individual crosses over with a 
no-blooded individual, then the offspring will 
inherit a bloodline value equal to a weighted 
sum of the bloodline of the parents, where the 
weight values depend on the percentage of the 
genetic material inherited from each parent.

The editorial design task for brochures 
and documents (posters) was implemented 
using a non-collaborative interactive genetic 
algorithm. Three genetic algorithms were used 
– the NSGA-II, a modified NSGA-II where 
each offspring design is created by mating 
(crossover followed by mutation) a design from 
the present population with the user-selected 
best, and an algorithm based on Dawkins’s 
biomorph (Dawkins, 1996) where offspring 
designs are generated by applying pure muta-
tions to the user selected best design. The three 
algorithms were selected to study the effect of 
generating offspring in different ways, which 
could have drastic effects in the behavior of 
the IGA, which can range from many diverse 
designs in the population to rapid convergence 
to a population that contains designs similar to 
the user selected best. Harrington et al. (2004) 
have proposed a set of aesthetic criteria for 
automated document layout which have been 
used as objective criteria. These include use of 
white space, the degree of overlap in the shapes 
(tiles) and spatial balance in the overall image. 
The same criteria are also judged subjectively 
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by comparing the user selected best design 
to every other design in the population. The 
averaged objective and subjective criteria are 
optimized using Pareto-optimality.

By building on the framework developed 
for floorplanning, we were able to modify the 
representation to evolve document layouts for 
editorial design (Quiroz, Banerjee, Louis, & 
Dascalu, 2009). By taking the rectangular rooms 
created in a typical floorplan and allowing for 
various transformations to be applied to each 
room while drawing each room respectively, 
we were able to get some degree of overlap 
and interesting shape combinations. We also 
allowed for various shapes to be drawn, such 
as drawing a circle instead of a rectangle for 
where a room should be, in order to achieve an 
even greater degree of variation and possibly 
interesting tiles.

We allowed for three types of shapes: 
(1) rectangles, (2) ellipses, and (3) rounded 
rectangles. Each of these shapes can be scaled 
up or down along the x and/or y axis by up to 
10%. The scaling allows for the original floor-
plan representation to be transformed into a 
collection of shape tiles, where either each tile 
can represent a placeholder for content (such 
as text or an image) or where the collection of 
tiles could represent a background design. The 
distinction between this representation and the 
floorplan representation is that the recursive 
partition, encoded as a nested list, is used only 
to create the initial set of shapes in a document. 
Once we know the allocation of tile (rooms in 
floorplans), we assign the shapes to one of four 

quadrants, based on the shapes’ locations, using 
the shape’s center as the point of reference. This 
results on a representation based on quad-trees 
of depth one. This is shown in Figure 6.

The editorial design interface had an ad-
ditional feature – the designer was able to 
customize evolved designs to make them look 
like actual brochures or posters. This function-
ality was lacking in the floorplan implementa-
tion which made the implementation less real-
istically satisfying to the designers. Evolved 
brochures or posters can be edited for content 
by the designer in a larger screen, which helps 
him or her to appreciate detail and facilitate 
editing. The background tiles can be moved 
around, text can be added to one of the existing 
shapes, images can be overlaid on tiles, tiles 
can be resized, deleted or have their colors 
changed among others. After customizing the 
designer has the option to save the current 
document as an image. Some examples of 
brochures created by students at ECSL are 
shown in Figure 7. The collaborative framework 
can easily be extended to the brochure design 
task, or even better the two tasks can be com-
bined because they use essentially the same 
genetic representation that is interpreted differ-
ently. Collaborating between the two tasks might 
lead to evolution of floorplans with rooms that 
have curved walls and organic shapes.

The proposed model and its implementation 
raise several issues related to interaction, col-
laboration, creativity, knowledge creation and 
computational intelligence. These are addressed 
below:

Figure	6.	Depth	one	quad-tree	representation	for	document	layout	design
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User Fatigue: Interactive computer systems 
need explicit mechanisms to sustain user 
interest throughout use time. Since the 
program performs most of the basic design 
tasks and only involves the user in the 
design evaluation phase which is a repeti-
tive task, it has been seen that users (i.e. 
human designers) tend to lose interest as 
the task progresses. There has been a whole 
body of research that deals with mitigating 
user fatigue in IGAs and other interactive 
computer-supported design systems (Gu 
& Frazer, 2006; Watanabe, Yoshikawa, & 
Furuhashi, 2007). Probabilistic and sta-
tistical methods combined with machine 
learning techniques have been used in the 
past; such techniques usually built using 
neural networks or support vector machines 
try to infer preference rules from a limited 
subset of interactions with the user. The 
objective is therefore to limit interaction 
instead of promoting it. The designer be-
comes less and less central to the process 
with time – the evaluation program learns 
from his or her few interactions, thereby 
building a virtual model of the user and 
predicting his or her actions as the design 
process progresses. The other approach is 
to make interaction less frequent but keep 
it constant throughout the process. The 
designer is only shown a small represen-
tational subset of the entire population at 
any given time and asked only to choose 

a concept that he or she “likes the most.” 
In addition designers may also be asked to 
choose another concept that they “dislike 
the most.” The intention is to learn just 
enough about some predefined criteria in 
the subjective component so as to allow 
the algorithm to rank solutions in the entire 
population by interpolation. Two related 
issues are – how to select a representa-
tive subset that encapsulates information 
carried by the entire population; and how 
to best define a distance measure to be 
used to rank designs based on the limited 
interaction. Unsupervised classification 
(clustering) techniques have been used in 
the past to address the former issue. Clus-
tering techniques such as k-means produce 
k-distinct clusters in the population – solu-
tions within a cluster are similar to each 
other and dissimilar to solutions in other 
clusters. The representative solutions from 
each of the clusters then are used to be part 
of the much smaller interactive subset. A 
suitable distance measure can be defined in 
the genotype space, using parameters that 
are part of the genotypic representation. 
For example, longest common subsequence 
(LCS) distance and Hamming distance can 
be used measure proximities between a pair 
of concepts whose genotype is made up of a 
linear sequence of integers (real or binary). 
Distance measures can also be in theory 
defined in the phenotype (solution) space.

Figure	7.	Sample	brochures	evolved	and	customized	using	the	interactive	genetic	algorithm	for	
editorial	design
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Subjective Fitness Evaluation: Evaluation of 
alternative concepts is central to any design 
process. Even ill-defined design problems 
such as in domains explored in this papers, 
have an objective body of knowledge 
related to the design process which help 
create general guidelines for the process to 
progress. For example, for the floorplan-
ning problem, certain basic architectural 
guidelines need to be followed whereas 
in editorial design, rules relating to color 
juxtaposition have been well-established 
and need to be incorporated in the objective 
fitness component. However, in addition 
to such objective guidelines, designers use 
their domain expertise and unquantifiable 
knowledge, preferences, emotions and 
biases to root out “bad designs” from the 
“good ones.” The implementation issues 
are two-fold: how to combine subjective 
preferences with objective guidelines, and 
how to interpret user preferences about aes-
thetics and other unquantifiable elements 
just by looking at user-preferred designs. 
For example, a designer might chose a 
floorplan over another given a choice; how 
does the system interpret this choice – is 
he or she choosing a particular floorplan 
because of the way the rooms the laid out 
with respect to each other, or because of 
the fact that the living room is easily acces-
sible from all three bedrooms or something 
even more subtle. The designers themselves 
do not make usually make a conscious 
choice; there is quite possibly interplay 
of a variety of factors that lead them to 
choose a certain floorplan over other. 
This leads us to envision a system that can 
learn as the design processes progresses, 
track user-preferences over time (usually 
a very short use-time) and make intelligent 
surmises. Another approach is to start with 
a few very low-level guidelines and then 
constantly modify them as new informa-
tion about user-preferences start coming in. 
This is akin to domain knowledge creation 
facilitated by expert-users. The system can 
also be built to evolve knowledge using 

expert-users in a supervisory role. In re-
search presented in this paper, we however 
treat the body of knowledge used to create 
objective rules as sacrosanct and assume 
that user-preferences about design elements 
do not include guidelines that are the basis 
of the objective component of fitness. In 
other words, the objective component is 
distinct from the subjective one. We then 
proceed to combine rules in the form of 
metrics, from the two components. There 
are two possible ways to do this – one is 
to create a weighted linear combination 
of such metrics from the two subdomains, 
but the issue is how to assign weights to 
signify relative importance of the different 
criteria? Another approach is to treat the 
two components separately and analyze 
Pareto-optimal fronts produced by the 
set of metrics such as in multi-objective 
optimization. We have investigated both 
approaches; however, there is no conclusive 
evidence for one approach being better 
than the other, and hence remains an open 
research question.

Collaboration and ET-Creativity: We have 
already presented arguments that relate 
Wiggins’s formalized framework of cre-
ativity with the collaborative interactive 
genetic search-based model of creativity 
proposed in this paper. Here we look at 
some research issues concerning imple-
mentations of the proposed collaborative 
model. The implementation of the model 
is at least pseudo T-creative; the remotely 
located designers working on the same 
design problem (floorplan design or edito-
rial design) have the ability to view a set 
of evolving peer designs and include one 
or more of these concurrent designs in 
their own population at any given time. In 
the present implementation that does not 
change system parameters or add extra vari-
ables to the design space itself. It does pro-
vide a departure (possibly radically) from 
the established subjective fitness norm. 
This leads to changing the set of traversal 
rules which Wiggins argues is E-creativity, 
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although it can be significant in the sense 
that it could guide the search to new areas 
of the already defined conceptual space. We 
argue that although the conceptual space of 
floorplans for a particular designer is the 
same as the space for another designer, the 
real “usable” subspace of designs is much 
smaller. We call this usable conceptual 
space, the design space and changing the 
set of traversal rules changes the design 
space. T-creativity as a non-collaborative 
process is shown schematically in Figure 
8 (left). The collaborative modification of 
design space is shown in Figure 8 (right) 
with designer 1 moving from an initial 
design space, 1S0 to Sn by collaborating 
with two other designers working in the 
same conceptual space, both of whom also 
converge to the design space Sn. True T-
creativity can be achieved in two possible 
ways within our collaborative interactive 
evolutionary exploration framework, (1) 
different designers start with different 
underlying representations, and represen-
tation of the designer who injects peer-
designs is modified drastically so that he 
or she can now search a completely new 
(previously unknown) conceptual space, 
or (2) the underlying representation is the 
same across the network, but genetic pa-
rameters are either switched off or on and 
injecting peer-designs will switch on (and 
off) a different set of design parameters, 

thereby extending or moving the conceptual 
space. The latter can be implemented by 
an efficient masking scheme in the repre-
sentation. Collaboration with interactive 
evolutionary search has the potential to 
be a T-creative design process.

P and H-creativity: A genetic search on a 
predefined conceptual space from a set of 
user-specified concepts is enough to 
guarantee P-creativity if it can be argued 
that the evolved concepts are both novel 
and valuable. Content novelty and value 
in turn can be guaranteed in theory if the 
user interacts with the search. On the 
other hand, H-creativity measured in the 
socio-historical sense is also theoreti-
cally possible if collaboration between 
two (or more) users working in different 
domains leads to the evolution of novel 
and valuable concepts that have never 
been proposed before in their respective 
domains. Interaction with a genetic search 
makes a P-creative scenario possible, and 
collaboration among users might lead to 
H-creativity if the collaborative system 
supports such cross-domain interpretation 
of concept-representation transforma-
tions. In fact, H-creativity as a result of 
cross-domain collaboration is a special 
case of combinational creativity, as seen 
in concepts which are born out of asso-
ciation and analogy.

Figure	8.	Left:	T-Creativity	in	design	processes	involves	changing	state	spaces	of	possible	designs	
i.e.	design	space	with	time;	Right:	Collaborative	creative	exploration	as	a	pseudo	T-creative	process
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Mediators and Affective mechanisms: De-
signers collaborating with other designers, 
interacting with a guided genetic search is 
a co-creation setup, where each designer 
is engaged in a meaningful activity while 
being influenced both by the interaction 
and the collaboration. The emergence 
of new designs in a particular designer’s 
evolving population is a function of both 
the interaction and collaboration. The 
design population should necessarily 
correspond to the personal state-of-mind 
of the designer at any given time. A de-
signer might collaborate for some time 
before switching off collaboration due to 
changes in his or her emotional or rational 
state. (“I do not want to collaborate with 
designers who have no idea what they are 
doing” or “my designs are quite superior 
to what my peers are producing so why 
bother collaborating.”) As long as the 
interactive choices are rational and can 
be interpreted by the IGA, collaboration 
or non-collaboration will reflect in the 
choices presented to the designer in the next 
round of design visualization. Classes of 
mediators in co-creation are defined based 
on spatial and chromatic relationships, and 
figurative, textual and temporal elements 
(Fischer & Giaccardi, 2006) – which can 
all be envisioned to be present in a creative 
open-ended activity that involves collabo-
ration with other designers and interacting 
with the computer-based support system. 
Open-ended design activities are defined 
as activities that have a defined purpose 
and no explicit goals, activities that require 
imagination and creativity.

Knowledge Creation: The collaborative in-
teractive genetic search process proposed 
in this paper can also be implemented in 
an online wiki-format (Watson & Harper, 
2008). This is infinitely more beneficial for 
difficult-to-solve constrained optimization 
problems that rely on distributed knowl-
edge and user input. By collaborating across 
a common platform, users consolidate and 
create a new body of knowledge that can be 

subsequently applied to related problems 
in different domains. It can also provide 
different, remotely located communities 
of practice a situated forum to bring to 
the table their diverse knowledge tools 
for collaboratively completing complex 
tasks. As an example, imagine instructors 
of sociology, engineering, arts and humani-
ties from different universities across the 
world collaborating to develop effective 
teaching strategies using case studies. The 
case studies from the different domains can 
be manipulated by an IGA by selecting, 
recombining and mating aspects deemed 
interesting in the interaction between 
instructors and the IGA. The result of the 
evolution say after 10 generations is a vast 
body of knowledge that is more than the 
sum of its parts.

CONCLUSION

In this paper, we propose a collaborative model 
for creative design based on interactive genetic 
algorithms. The collaborative computational 
model has been shown to possess exploratory-
transformation creativity, and is also related to 
the meta-design approach for solving complex 
design tasks using open support systems. 
We have addressed several issues relating to 
implementation such as ones relating to cre-
ative spaces, user fatigue, subjective fitness 
evaluation, mediators, affective mechanisms, 
interaction and collaboration. We implement 
our proposed model to collaboratively evolve 
floorplans and interactively evolve editorial 
design layouts for brochures and posters – two 
applications that use an established body of 
knowledge and rely on user preferences. Al-
though these implementations are designed at 
the product level (a floorplan or a brochure is 
a product), the same principles can be used to 
design for at an abstracted level, e.g. instead of 
directly evolving floorplans as physical artifacts, 
they can be evolved at the “idea” level in terms 
of their constitutive elements. This is almost 
certainly more realistic and also mimics the 
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creative process architectural teams go through 
at design conceptualization time. The amount 
of creative content is more at the abstracted 
level compared to the physical level of design, 
involves more imagination than knowledge. 
In summary, an open system is simulated by 
implementing a synthesized (closed) system 
used collaboratively across different knowl-
edge domains and across users with different 
subjective preferences to the same design 
process. An open computer support system is 
central to the premise of meta-design, with the 
promise of enhanced knowledge creation and 
computational system intelligence.
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