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We propose a computational model for creative design based on collaborative in-
teractive genetic algorithms, and present an implementation for evolving creative 
floorplans and widget layout/colors for individual UI panels. We map our model 
and its implementation to earlier models of creative design from literature. We 
also address critical research issues with respect to the model and its implementa-
tion – issues relating to creative design spaces, design space exploration, design 
representation, design evaluation (competition), design collaboration, and design 
visualization (for interactivity). Results comparing collaborative evolution of 
floorplans to non-collaborative evolution are also presented, and pre-tests using 
surveys indicate that floorplans developed via collaboration are more original than 
those produced by individual non-collaborative evolution.   

Introduction 

Design is a fundamental, purposeful, pervasive and ubiquitous activity and 
can be defined as the process of creating new structures characterized by 
new parameters, aimed at satisfying predefined technical requirements. It 
consists of several phases, which differ in details such as the depth of de-
sign, kind of input data, design strategy, procedures, methodology and re-
sults [1]. Usually the first stage of any design process is the preliminary or 
the conceptual design phase, followed by detailed design, evaluation and 
iterative redesign [2]. Computers have been used extensively for all these 
stages of design except the creative conceptual design phase. According to 
Goldberg [3], this phase of design has been regarded as a black art locked 
up in a time warp of platitudes, vague design procedures and problem-
specific design rules.  
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Creative evolutionary computational systems have been defined by 
Bentley and Corne, as evolutionary systems that either aid human creativ-
ity or solve problems that only creative people could solve [4]. Goldberg 
presents an idealized framework for conceptual design in four components: 
problem, designer, alternative designs and design competition, and shows 
how evolutionary techniques (specifically genetic algorithms) can be 
thought of as ‘a lower bound on the performance of a designer that uses 
recombinative and selective processes’ [3]. Rosenman has explored evolu-
tionary models for non-routine design [5] and has investigated the genera-
tion of creative house plans (later referred to as floorplans in this paper) 
using genetic algorithms [6]. Creation of floorplans has also been investi-
gated by Gero and Schnier as an evolving representation problem that re-
structures the search space in [7], by co-evolution of design and solution-
spaces in [8], and using case-based reasoning by De Silva Garza and 
Maher in [9]. 

Unlike detailed design where optimization criteria are readily quantifi-
able, alternative design concepts during the preliminary design phase may 
need to be subjectively evaluated, especially when requirements include 
aesthetic and other subjective criteria. It is difficult, often impossible to 
construct matrices and explicit functions that can mimic the way designers 
evaluate subjective criteria. Interactive Genetic Algorithms (IGAs) are ge-
netic algorithms whose fitness function is replaced by interactive user 
evaluations. IGAs in particular and interactive evolutionary computation 
(IEC) in general have been used in a wide range of applications, ranging 
from engineering to arts and social sciences, to design user-centric optimi-
zation systems [10].  

At the same time, collaborative systems have been the focus of studies 
into creativity and computer supported cooperative work [11] since the 
early 90s. There has been a paradigm shift from computer-aided design 
systems to computer supported collaborative design systems [12]. It has 
been argued that much of our intelligence and creativity results from inter-
action and collaboration with other individuals [13]. In this paper, we pro-
pose a computational model of the creative design process using a collabo-
rative interactive human-centered approach to exploration of design 
spaces. We present a collaborative interactive genetic algorithm implemen-
tation for our model to evolve floorplans and widget layout/style design, as 
a user-interface development tool. We compare designs evolved by a col-
laborative peer group, against those evolved individually by designers, and 
find that the former designs consistently rated higher on the “originality” 
scale, thereby lending credence to our computational model. 
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Motivation 

The purpose of the research presented in this paper is to build a collabora-
tive, interactive, genetic algorithm based design tool to test the hypothesis 
that collaborative, interactive, evolutionary exploration of design space is a 
viable computational model of creative design. One of the distinctions 
made between different types of creativity include Boden’s [14] two types 
of creativity: H-creativity and P-creativity. H-creativity or historic creativ-
ity occurs when the design falls outside the range of designs created by 
anyone in the society, whereas P-creativity or personal creativity occurs 
when the design is novel to the designer (but may not be novel to the 
world). S-creativity or situated creativity [15], a more recently identified 
type, occurs when the design contains ideas that were not expected to be in 
the design when the design was commenced. Thus the design may not be 
novel in the P or the H sense but is novel in that particular design situation. 
In the absence of cohesive collaboration, artists or creative people exhibit 
P-creativity. We are interested in investigating the social aspects of crea-
tivity by facilitating and encouraging group interaction and cooperation, 
which we hypothesize, will lead to individual P-creativity and a group S-
creativity. Our model maps to a system of creative design through social 
acts and social influence [13,16], where individual designers interact with 
an evolutionary system to guide the P-creative design process while at the 
same time cooperating within themselves by introducing new state vari-
ables, thereby guiding the S-creative design process. 

Our collaborative interactive evolutionary exploration model also relates 
to the blind variation and selection retention model based on the Darwin-
ian theory of creativity [17]. The blind variation and selection retention 
model of creativity states that the creative process is characterized in the 
first stage by production of a myriad of ideas and thoughts while lacking 
the foresight in the production of variations, followed by subjective selec-
tion and retention of the most meaningful ideas and thoughts. Since 1960, 
a body of research has been dedicated to furthering the evolutionary model 
of creativity [18]. This Darwinian framework for modeling creativity has 
found use in a connectionist approach to create a computer-based model of 
the creative process [19] and connects well with our model. In the next 
section we present the discussion on the proposed computational model 
and issues related to its implementation.  
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The Computational Model of Creativity 

A computational approach to investigate design spaces (or solution spaces) 
to support a human designer’s exploration is presented in Woodbury and 
Burrow [20]. A design space is defined as a networked structure of related 
descriptions of partial and intentional designs encountered in an explora-
tion process. Woodbury and Burrow also claim that robust reuse of paths 
of exploration is of critical importance in design space exploration. We 
continue this line of thought with a collaborative approach to the explora-
tion of a solution space using an interactive genetic algorithm. The de-
signer-centric aspect due to the interactivity with the genetic algorithm 
helps in assigning a utility to a particular solution in the space, while col-
laboration between various designers helps the genetic algorithm to diver-
sify and explore an extended search space. We hypothesize that the col-
laboration brings about concurrent exploration of design subspaces, and 
elements of the final design are a creative (unforeseen) collection of indi-
vidual elements of various subspaces.  

 

 
Figure 1. Schematic showing implementation of the proposed collaborative inter-
active evolutionary model for creative design 

Figure 1 represents an implementation of our computational model of 
creative design. Each dotted box represents a running instance of the inter-
active design tool – each instance is guided by a designer and searches a 
particular subspace in accordance with designer preferences. The genetic 
algorithm in each instance combines the designer’s subjective picks with a 
computable fitness function to drive genetic search through a design sub-
space. The user-interface to our design tool allows the designer to zoom in 
on a particular displayed design and pick aspects of the design for explora-
tion. In addition to guiding his or her own search through a subspace, each 
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designer also can see a small subset of the other designers’ evolving de-
signs. The designer can then choose to expand his or her search space or 
move to another space by incorporating one or more of the peer-evolved 
designs into his or her genetic population. Incorporating peer-evolved de-
signs tends to influence the subjective and objective utility functions asso-
ciated with the genetic search. The proposed model and its implementation 
raise several research issues. We divide these issues into five broad catego-
ries. 

Design Space Exploration 

The most important research issue is the collaborative versus individual 
exploration of the design space. Having investigated both collaborative 
and individual interactive genetic algorithms for evolving floorplans and 
widget layouts/styles for UI, we have empirical evidence that the creative 
content of the collaboratively evolved designs are superior to those of the 
individually evolved designs. We present evidence of our claim in the re-
sults section later in this paper. 

Creative Design Spaces 

According to Gero [21], creative designing can be defined in computa-
tional terms as the activity that occurs when one or more new variables are 
introduced into the design. This leads to the distinction between product 
and process creativity – creative design processes (processes based on ad-
dition and deletion of design variables) have the potential to aid in the de-
sign of creative artifacts, but as such they do not guarantee that the artifact 
produced is creative by itself. In other words, the creative design process is 
characterized by an extension or movement of the state space of potential 
design to new regions in the infinitely large state space of all possible de-
signs. This is shown as a pictorial in Figure 2 (left).  

Collaboration provides an effective framework for extending an exist-
ing state space or moving to a new state space. By injecting peer-designs 
into his or her genetic population, the designer is in a way modifying his or 
her own “effective” state space. This is shown as a schematic in Figure 2 
(right) with designer 1 moving from his initial state, 1S0 to Sn by collabo-
rating with two other designers, both of whom also converge to the crea-
tive space. This feature can be implemented in two possible ways within 
our collaborative interactive evolutionary exploration framework: (1) dif-
ferent designers have different underlying representation schemes to start 
with, and the representation of the designer who is injecting peer-designs 
is influenced drastically so that he or she can now search a previously un-
known solution space; or (2) the underlying representation is the same 
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across all users, but design parameters are either switched off or on and in-
jecting peer-designs will switch off (and on) a different set of design pa-
rameters, thereby extending or moving the state space of solutions. This 
can be implemented by an efficient masking scheme in the representation. 
In summary, collaboration in evolutionary search has the potential to be a 
creative designing process.  
 

 
Figure 2. Left: Creative designing involves changing state spaces of possible de-
signs with time [21]; Right: Collaborative creative exploration 

Fitness Function 

Evaluation of alternative designs is central to the conceptual design proc-
ess. In addition to objective guidelines (which usually are derived from de-
sign requirements analysis), designers use their domain expertise and 
knowledge, preferences, emotions and biases to root out bad designs from 
the good ones. We incorporate evaluation based on subjective biases by 
letting the designer interact with the evolving population at either every 
generation of the evolution process or after every n generations (n > 1). 
However, since not every design criterion is subjective, we are faced with 
the problem of either combining the metrics obtained from the subjective 
and objective evaluation criteria or treating them separately. In the former 
case, how does one create a weighted linear combination of such metrics, 
and decide how to assign weights to signify relative importance of the dif-
ferent criteria? In the latter case, one might be tempted to treat the criteria 
separately by analyzing Pareto-optimal fronts (if any) produced by the set 
of criteria under consideration. We have investigated both approaches; 
however, there is no conclusive evidence for one approach being better 
than the other, and hence remains an open research question. 
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Representation 

The issue of what constitutes a good representation is vital to the efficacy 
of any evolutionary search technique. Evolutionary optimization tech-
niques, including genetic algorithms, require that designs (or solutions) be 
encoded in a manner suitable for genetic operators, such as crossover and 
mutation, to work on. For the floorplanning problem, we have used a bi-
nary tree with much initial success as the genotypic representation that en-
code for the floorplans. We have also used the integer and bit-string repre-
sentations to evolve widget layout/style.   

In the next section, we present the collaborative interactive genetic al-
gorithm implementation of our proposed model, which we call IGAP – In-
teractive Genetic Algorithm Peer to Peer.  

IGAP: Interactive Genetic Algorithm Peer to Peer 

We present an implementation of our collaborative model for creative de-
sign for evolving floorplans and widget layout/style schemes. Although, 
we have implemented them as two distinct modules, they can be seam-
lessly put together as a coherent two-phase user-interface design tool. In 
addition to being used as an archetype for UI panel layout, floorplanning is 
of importance to Architecture and Civil Engineering. The implementation 
is shown in Figure 3. We first present details of the IGA framework and 
discuss the collaborative framework later. 

IGA Framework 

IGAP is part of a GA/IGA framework we have built to support evolution-
ary design of user interface elements. For a problem requiring interaction 
with a user, the designer is required to implement the fitness function - 
which takes the user input and evaluates each individual in the population 
based on the user provided feedback, and a drawing function - which 
draws to the screen the subset of individuals from the population to be 
evaluated by the user.    

Representation 

For evolving floorplans we have used a binary tree representation, coded 
as a nested list. At every node of the tree, the parameters specify how the 
rectangular panel at that level is subdivided (either left/right or top/bottom) 
and what percentage of panel area at that level is contained in either the 
left or the top subdivision. Figure 4 shows how the rectangular panel is 
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subdivided into rooms and spaces. A room is represented by the list [0, 1] 
and a space by [0, 0]. An arbitrary list [0, 0.75] represents division in 
top/bottom configuration with top sub-panel containing 75% of the parent 
panel. Another list [1, 0.80] represents division in left/right configuration 
with left sub-panel containing 80% of the parent panel. 
 

 
Figure 3. The collaborative interactive genetic algorithm implementation for crea-
tive designing 

 

 
Figure 4. Binary tree representation of floorplans encoded as a nested list 
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 For widget layout and style design, we use two chromosomes to specify 
the user-interface panel. On the panel, the widgets are laid out on a grid 
and different widgets are identified by a widget identification number (1 
onwards, 0 for spaces on the panel grid). A sample layout and its encoding 
are shown in Figure 5. This is an example of an integer representation. The 
second chromosome encodes for various style characteristics, including 
background and foreground color, vertical and horizontal spacing between 
widgets in the layout grid, and font type.  All of these attributes are en-
coded in a bit string – string of 0s and 1s. For color we use the RGB repre-
sentation, where each color consists of three components: red, green, and 
blue. The RGB components vary from 0 (black) to 255 (white).   
 

 
Figure 5. Encoding of the widget layout: Widgets are identified by integer IDs 
(>0) and empty cells in the grid are identified with 0s 

Genetic Operators 

The binary tree representation for floorplans necessitates the need for a 
specialized tree-crossover operator. The nested list is parsed as a binary 
tree and two such parent trees are crossed at randomly chosen nodes, such 
that entire sub-trees following those nodes are swapped. The tree represen-
tation is used in genetic programming (Koza 1992) and hence, our cross-
over operator maps to the crossover operator used in genetic programming. 
The operator is shown schematically in Figure 6.  

Depending on the probability of mutation, the mutation operator works 
on the two parameters of the nodes (or leaves) differently. It performs a 
binary swap on the first parameter thereby changing the subdivision con-
figuration. Depending on the value of the second parameter, the operator 
either performs a binary swap (if the value is either 0 or 1), thereby chang-
ing a room to a space and vice versa, or if the second parameter is a real 
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number between 0 and 1, the operator replaces it by another random real 
number in the same interval, thereby altering the dimensions of the room 
(or the space).  

The widget layout chromosome is an integer sequential encoding, and in 
order to preserve this permutation representation, we use the Partial 
Mapped Crossover (PMX) operator. PMX keeps crossover from creating 
individuals with duplicate genes, which would violate the permutation 
property. We also use swap mutation, which randomly picks two alleles 
from the chromosome and swaps them. For the widget style chromosome, 
we use single point crossover and bit-flip mutation operators. 
 

 
 

 
Figure 6. Tree crossover operator 

Fitness 

There are times when it is difficult if not impossible to determine the fit-
ness function for a problem domain when using evolutionary computation. 
An IGA replaces the fitness evaluation with the user. IGAs are useful 
when there is no better fitness measure than the one in the human mind. 
IGAs have been applied to various domains, ranging from artistic and 
highly creative applications to engineering [10]. 

A typical IGA session consists of a user evaluating a set of individuals 
from the IGA population. The individuals of the population are then as-
signed a fitness value (or values), based on subjective and objective crite-
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ria of evaluation. In the floorplanning problem, we separate objective crite-
ria from subjective criteria as, (1) the only measurable objective in floor-
plans is their compliance with the Architect data guidelines [22]. The 
guidelines for single-storey house plans relate to minimum room dimen-
sions and areas. Every individual floorplan is assigned a fitness value 
based on its compliance with the minimum dimension and minimum area 
guidelines. (2) The IGA lets the designer pick a particular floorplan as be-
ing the “best”. This subjective pick (based on preferences) is translated 
into his or her preference for the number of rooms, total built area (area 
occupied by rooms), and room adjacencies. An individual plan is com-
pared with the “best” plan and assigned high fitness values if the plan is 
similar to the “best” plan in each of the three subjective criteria. 

The objective component of fitness for evolving widget layout and style 
comes from UI style guidelines. The main guideline currently incorporated 
in the objective evaluation is the use of highly contrasting background and 
foreground colors. The grid positioning of the widgets in the layout auto-
matically enforces a widget alignment guideline. The objective fitness is 
the Euclidean distance between the color vectors of the foreground and 
background colors. The subjective evaluation consists of finding the simi-
larity between the currently evaluated individual with the user selected 
best by using the longest common subsequence (LCS). We find the length 
of the LCS of the layout chromosome (length1) and of the style chromo-
some (length2). We add these two lengths and use the sum as the subjec-
tive fitness score. 

Genetic Algorithm 

We use the Non-dominated Sorted multi-objective Genetic Algorithm, ab-
breviated as NSGA-II [23]. The NSGA-II creates fronts of non-dominated 
individuals, where within a front none of the individuals are any worse 
than any other individual across all optimization criteria. All individuals 
within a front are said to have the same rank. We select parents by using 
the crowded distance tournament operator. We pick two individuals to par-
ticipate in the tournament, and we select the individual with the higher 
rank to be part of the mating pool. In case the two individuals have the 
same rank, and consequently belong to the same front, then the crowded 
distance of both individuals is computed, and we select the individual with 
the highest crowded distance to be part of the mating pool. This translates 
to the individual being in a less crowded region of the front and hence, the 
crowded distance selection favors the most diverse individuals within a 
front.  
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We implement both the floorplans design and widget layout/style evolu-
tion with the NSGA-II.  For floorplans design we use a four-criterion 
multi-objective minimization function. With the widget layout/style im-
plementation we keep the objective and subjective criteria separate and use 
a two-criterion minimization function for NSGA-II. We have also used the 
standard canonical GA where we combine the subjective and objective fit-
ness into a single weighted linear sum [24]. 

Visualization of Solution Space 

We display a subset of nine individuals, from a large population size, to be 
evaluated by the designer. We chose nine because it allows us to display a 
visually appealing grid of 3x3 individuals, which also does not overwhelm 
the designer.  What to display from the population to be evaluated by the 
user is a critical step, since displaying useful information to the user makes 
for a productive session, while displaying a poor subset can inhibit the 
progress of the interactive evolutionary process.  

Various methods of selecting a small subset from a large population 
have been previously explored [24-26]. In the work presented in this paper 
we select individuals from the fronts created by the NSGA-II. We pick 
three individuals from the first front, three individuals from the second 
front, and so on until we have obtained nine individuals. If there are less 
than three fronts, or if one of the fronts has less than three individuals, then 
we obtain the next three individuals from the next front in a round robin 
fashion. We also enforce that all individuals in the displayed subset are 
unique, given that the population contains enough diversity, since display-
ing a small subset consisting of numerous repeats is not useful to the user 
and does not give the user a sense of the current state of the population.  

By displaying a small subset and through fitness interpolation we can 
reduce the amount of user interaction, and thereby, user fatigue. However, 
if the case arises that the user does not like any of the individuals in the 
displayed subset, then the user has the option to scroll down the current 
panel, and view the rest of the population, which remains hidden from 
view unless the user scrolls down. For users with little patience or that fa-
tigue quickly (which is often the case), they can adhere to the use of the 
displayed subset. For the adventurous users, who are not intimidated by 
viewing hundreds of individuals to find the individual they like the best, 
they can scroll to view every single individual in the population. The abil-
ity to view the entire population also proves useful to users who early in a 
session explore the entire population, when there is a high degree of diver-
sity, and later on only use the subset after the population has been biased to 
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custom-evolved individuals. A snapshot of the interactive screen for non-
collaborative floorplanning is shown below in Figure 7. 
 

 
Figure 7. The non-collaborative interactive interface for floorplanning 

The user input consists of selecting the individual the user likes the best 
from either the subset, or from one of the individuals from the rest of the 
population (viewed by scrolling). We use the user selected best to interpo-
late the fitness of every other individual in the population. On the top of 
each individual displayed, we add a button with the label "Best". By click-
ing on the "Best" button of a design displayed to the user, he or she pro-
vides input to the IGA regarding the fitness criteria. Currently, we only 
support for only one individual to be selected as the best. Through the in-
terface we also support the ability to provide input every nth generation, 
where the value of n stands for the number of generations skipped before 
asking for user input, and which can be changed during a session. We also 
allow the user to go back to a previous generation if the population di-
verged into an undesired direction. The user also controls the crossover 
and mutation rates through the interface. 

Collaborative Framework 

The collaborative module is wrapped over the interactive module and is 
what binds the individual IGA sessions together. Collaborative evolution is 
implemented by networking with a peer to peer network. We treat each 
user participating in evolution as a node, handling incoming requests from 
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other nodes (peers) and requesting information from peers. By using a peer 
to peer network, control is decentralized and each node is free to chose 
who to connect to and if necessary who to exclude from its set of peers. 
Note that connections between peers must be direct, we do not support for 
spidering connections, where node-A can connect to node-C through node-
B.  Since each node consists of a server to handle request from any peer, 
each node can broadcast its signal to any peer that connects to it. 

Collaborative Interface 

During collaborative evolution, a subset of peer-evolved designs is dis-
played to the right of the user's population. We limit the number of peer 
individuals to nine, organized in a 3x3 grid, similar to how we present the 
user's own population, in order to be consistent. For more than one peer, 
we cannot display all the individuals belonging to the subset of each peer, 
since we only display nine. We do make sure that the user selected best in-
dividuals from each peer are displayed on the peers subset. We save the 
user selected best from generation to generation, and we always make it 
part of the subset displayed the next time the IGA requires user input. The 
reason for making sure that a peer can see the user selected best from other 
peers is that if a user selects an individual as the best, then it was because 
the user found the selected individual to be the most interest-
ing/intriguing/creative and to be the best candidate to bias the evolution of 
his or her own population, as well as those of other users. We select the 
rest of the individuals that make up the peers subset by taking a random 
subset from a collective pool of all individuals that make up peers’ subsets. 
By selecting a random subset, we believe that over many generations, all 
of the participants will get approximately the same amount of their designs 
displayed on the screens of collaborators. 

The benefit of viewing the best individuals from peers is limited, unless 
the user is able to take promising individuals from peers and mold them to 
their liking. We support this by allowing the user to inject individuals from 
the subset of peers into the user's own population. The user can select an 
individual from a peer to be added to the user's own gene pool by clicking 
on the “Add to Genome” button. The user can also select a best individual 
from the subset of individuals from peers, in which case the user selected 
best is automatically injected into the population, and used for fitness in-
terpolation.  We require the user to select a best individual, but it does not 
have to be from the user's own population – the user selected best can 
come from peers. The collaborative interface is shown in Figure 8. 
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Figure 8. The collaborative interactive interface for the floorplanning problem 

Fitness Bias 

We use fitness biasing to ensure that injected individuals survive long 
enough to leave a mark on the host population by using the concept of 
bloodline. Injected individuals are considered to be full blood, while those 
individuals already in the population are treated as individuals with no 
blood. The bloodline consists of a number between 0 (no blood) and 1 (full 
blood), and this value is added as another criteria to be maximized by the 
NSGA-II with Pareto optimality. Thus injected individuals will all be non-
dominated (in the topmost front) and will not die off immediately. The in-
jected individuals replace the bottom 10% of the population [27]. When a 
full-blooded individual crosses over with a no-blooded individual, then the 
offspring will inherit a bloodline value equal to a weighted sum of the 
bloodline of the parents, where the weight values depend on the percentage 
of the genetic material inherited from each parent.  

Computational Results  

We present some preliminary results for the floorplanning and widget lay-
out/style design problem. Floorplans were evolved based on a simulated 
design brief that stated the problem as a minimally constrained one. The 
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brief was to design a floorplan for a two-bedroom, one-bathroom apart-
ment with the following constraints: (1) one of the corners of the living 
area is also the north-west corner of the plan, (2) the two bedrooms should 
not have a common wall, and (3) at least one of the bedrooms has a direct 
access to the bathroom. The problem stated above was solved both indi-
vidually and collaboratively by the authors and two of their colleagues. 
During the collaborative evolution, only nine representative designs were 
made visible to every designer in the peer-group. Every designer also had 
access to a subset of nine evolving designs from the populations of the four 
other peers. However, during individual evolution of floorplans for the 
same problem, the designer had visual access to all the evolving designs in 
his own population to ensure some sort of parity in the visualization space 
vis-à-vis the collaborative evolution. In other words, for a standard popula-
tion size of 100, the designer participating in the collaborative evolution 
effort had visual access to 18 designs at a time, while the same designer 
involved in the individual pursuit of evolution had visual access to all 100 
designs. 

We also used a design template to aid us with the first fitness computa-
tion. For a population size of 100, the initial population has 99 floorplans 
that are created randomly and the design template constituted the 100th 
floorplan. The template serves as the assumed “best” for the first genera-
tion, and the randomly created floorplans are compared to the template and 
assigned the three subjective fitness values discussed in section 4.1.3. All 
floorplans are also evaluated based on their compliance with the Architec-
tural data guidelines. Based on the four criteria, the Pareto-optimal fronts 
are calculated and three members selected at random from the first fronts 
each are displayed to the designer. The designer then interacts with the in-
terface and brings the evolution to a stop when he or she feels that there 
are one (or more) interesting designs in the current population.  

Solutions to the two-bedroom one-bathroom problem described earlier 
were evolved over multiple runs both individually and collaboratively. In-
terestingly, we used as a design template a one-bedroom one-bathroom 
plan, which goes on to show that the choice of template is not an issue (the 
template itself was lost in 5-6 generations). We achieved satisfactory re-
sults (floorplans meeting all or most of the constraints) in most cases 
within 15-20 generations. In Figure 9 a set of six floorplans the designers 
considered interesting while individually evolving floorplans is shown, and 
in Figure 10 we show a set of six floorplans that the same designers con-
sidered interesting when they collaborated on the same problem. The 
rooms are color coded as red (living area), yellow (bedrooms), green (eat-
ing areas – kitchen and/or dining rooms), firebrick (bathrooms) and white 
(empty spaces in the plan).  
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Figure 9. Six representative floorplans for the design problem evolved non-
collaboratively 

         
 

Figure 10. Six representative floorplans for the design problem evolved collabora-
tively 

The plans were evaluated for creative content based on practicality and 
originality on a five-point scale [28]. We conducted this as an initial pre-
test that would eventually help us devise a more effective methodology for 
design concept evaluation. We sought the participation of ten graduate stu-
dents, five from our lab and five outside of our lab. In addition to the two 
viewpoints of practicality and originality, we also asked survey partici-
pants to rate how close a design comes in meeting the minimum design re-
quirements and the set of constraints. Based on this, it was unanimously 
felt that #5 (Figure 9) and # 9 (Figure 10) did not meet the north-west liv-
ing room constraint and hence, it was decided to omit them from the 
evaluation. The results of the evaluation are presented in Table 1. 

The collaboratively designed floorplans were consistently rated higher 
on the originality scale, while the individually (non-collaborative) de-
signed floorplans were found to be more practical. Many survey partici-
pants ranked #12 (Figure 10) as being the most original and the least prac-
tical floorplan. Because of the limited size of the survey population, it 
would be premature to conclude that collaboratively developed floorplans 
do not address resolution aspects as well as the individually developed 
floorplans do. We also feel that a designer-centric viewpoint of creativity 
should hold as much weight as peer-evaluation based on practicality and 
originality. Design #7 (Figure 10) came about when one designer evolving 

  1                         2                           3                         4                        5                           6 

  7                         8                           9                         10                        11                        12 
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designs with “two-bedrooms one-bathroom with no eating areas” (similar 
to #2) injected his population with a peer’s design, one who was evolving 
plans with a kitchen area (similar to #3). Neither designer was likely to 
come up with #7 on their own, which also happens to score highly on the 
originality scale. In fact, all the collaboratively designed floorplans were 
rated in the top-5 on the originality scale.  

Table 1 Creativity evaluation of the ten representative design concepts 

DESIGN # PRACTICALITY ORIGINALITY RANK 
1 2.7 3.1 6 
2 2.9 2.7 8 
3 2.4 3.3 7 
4 4.4 3.3 2 
6 4.0 3.2 3 
7 2.2 3.4 8 
8 2.8 3.4 5 
10 3.2 3.5 4 
11 4.2 3.6 1 
12 1.6 3.8 10 

 
The UI panel evolution shows promise, but further experiments and data 

analysis are required. Figure 11 (left) shows three UI panels evolved indi-
vidually and Figure 11 (right) shows three panels evolved collaboratively. 
Although the preliminary results are inconclusive, we did find that collabo-
ratively evolved panels, showed overall visually appealing softer color 
tones, while individually evolved panels show a high degree of contrast 
between background and foreground color (at times uncomfortable combi-
nations). 
 

    
Figure 11. Left: Three representative UI panels evolved individually (notice the 
high contrast between foreground widget colors and background panel color); 
Right: Three representative UI panels evolved collaboratively          
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Conclusions  

In this paper, we propose a collaborative model for creative designing 
based on interactive genetic algorithms. We implement our proposed 
model to collaboratively evolve floorplans and widget layout designs – 
two applications that may have potential use in interactive development of 
user-interfaces. We have addressed several issues relating to implementa-
tion and issues relating to genetic search, interaction and collaboration. We 
also compare results of collaborative evolution with similar results ob-
tained with individual (non-collaborative) evolution, by evaluating created 
designs on a five-point scale for practicality and originality. The pre-test 
indicates that while individually created floorplans were rated highly for 
practicality, the collaboratively generated floorplans were considered more 
original. Based on these preliminary findings, we believe that there is 
enough empirical evidence to support our hypothesis that collaborative in-
teractive evolutionary search of design spaces is indeed a viable computa-
tional model of creative design.                         
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